Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
JID Innov ; 1(1): 100004, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-2298198

ABSTRACT

Pemphigus is an epidemiologically heterogeneous group of autoimmune bullous diseases comprising pemphigus vulgaris (PV), pemphigus foliaceus, paraneoplastic pemphigus, IgA pemphigus, and pemphigus herpetiformis. Recently, our knowledge about the frequency of pemphigus, which is highly variable between different populations, has considerably expanded, and the first non-HLA genes associated with PV have been identified. In addition, a variety of comorbidities, including other autoimmune diseases, hematological malignancies, and psoriasis, have been described in this variant. Here, initial data about the impact of COVID-19 on this fragile patient population are discussed and perspectives for future epidemiological studies are outlined.

2.
J Herb Med ; 38: 100635, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2210392

ABSTRACT

Introduction: A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method: This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results: Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions: Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.

3.
Front Pharmacol ; 13: 968104, 2022.
Article in English | MEDLINE | ID: covidwho-2142204

ABSTRACT

Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.

4.
Radiol Case Rep ; 17(9): 3179-3184, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907703

ABSTRACT

Background: COVID-19 disease is often complicated by respiratory failure, developing through multiple pathophysiological mechanisms, with pulmonary embolism (PE) and microvascular thrombosis as key and frequent components. Newer imaging modalities such as dual-energy computed tomography (DECT) can represent a turning point in the diagnosis and follow-up of suspected PE during COVID-19. Case presentation: A 78-year-old female presented to our internal medicine 3 weeks after initial hospitalization for COVID-19 disease, for recrudescent respiratory failure needing oxygen therapy. A computed tomography (CT) lungs scan showed a typical SARSCoV-2 pneumonia. Over the following 15 days, respiratory function gradually improved. Unexpectedly, after 21 days from symptom onset, the patient started complaining of breath shortening with remarkable desaturation requiring high-flow oxygen ventilation. CT pulmonary angiography and transthoracic echocardiography were negative for signs of PE. Thereby, Dual-energy CT angiography of the lungs (DECT) was performed and detected diffuse peripheral microembolism. After 2 weeks, a second DECT was performed, showing a good response to the anticoagulation regimen, with reduced extent of microembolism and some of the remaining emboli partially recanalized. Discussion: DECT is an emerging diagnostic technique providing both functional and anatomical information. DECT has been reported to produce a much sharper delineation of perfusion defects than pulmonary scintigraphy, using a significantly lower equivalent dose of mSv. We highlight that DECT is particularly useful in SARS-Cov-2 infection, in order to determine the predominant underlying pathophysiology, particularly when respiratory failure prolongs despite improved lung parenchymal radiological findings.

5.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

6.
IJID Reg ; 2: 191-197, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1639444

ABSTRACT

Background: Data on biochemical markers and their association with mortality rates in patients with severe coronavirus disease 2019 (COVID-19) admitted to intensive care units (ICUs) in sub-Saharan Africa are scarce. An evaluation of baseline routine biochemical parameters was performed in COVID-19 patients admitted to the ICU, in order to identify prognostic biomarkers. Methods: Demographic, clinical, and laboratory data were collected prospectively from patients with PCR-confirmed COVID-19 admitted to the adult ICU of a tertiary hospital in Cape Town, South Africa, between October 2020 and February 2021. Robust Poisson regression methods and the receiver operating characteristic (ROC) curve were used to explore the association of biochemical parameters with severity and mortality. Results: A total of 82 patients (median age 53.8 years, interquartile range 46.4-59.7 years) were enrolled, of whom 55 (67%) were female and 27 (33%) were male. The median duration of ICU stay was 10 days (interquartile range 5-14 days); 54/82 patients died (66% case fatality rate). Baseline lactate dehydrogenase (LDH) (adjusted relative risk 1.002, 95% confidence interval 1.0004-1.004; P = 0.016) and N-terminal pro B-type natriuretic peptide (NT-proBNP) (adjusted relative risk 1.0004, 95% confidence interval 1.0001-1.0007; P = 0.014) were both found to be independent risk factors of a poor prognosis, with optimal cut-off values of 449.5 U/l (sensitivity 100%, specificity 43%) and 551 pg/ml (sensitivity 49%, specificity 86%), respectively. Conclusions: LDH and NT-proBNP appear to be promising predictors of a poor prognosis in COVID-19 patients in the ICU. Studies with a larger sample size are required to confirm the validity of this combination of biomarkers.

7.
J Clin Exp Hepatol ; 11(6): 713-719, 2021.
Article in English | MEDLINE | ID: covidwho-1525839

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with a significant morbidity and mortality in patients with cirrhosis. There is a significantly higher morbidity and mortality due to COVID-19 in patients with decompensated cirrhosis as compared to compensated cirrhosis, and in patients with cirrhosis as compared to noncirrhotic chronic liver disease. The fear of COVID-19 before or after liver transplantation has lead to a significant reduction in liver transplantation numbers, and patients with decompensated cirrhosis remain at risk of wait list mortality. The studies in liver transplantation recipients show that risk of mortality due to COVID-19 is generally driven by higher age and comorbidities. The current review discusses available literature regarding outcomes of COVID-19 in patients with cirrhosis and outcomes in liver transplant recipients.

8.
Biocatal Agric Biotechnol ; 37: 102178, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1517053

ABSTRACT

The recent outbreak of COVID-19, caused by the novel pathogen SARS-coronavirus 2 (SARS-CoV-2) is a severe health emergency. In this pandemic, drug repurposing seems to be the most promising alternative to identify effective therapeutic agents for immediate treatment of infected patients. The present study aimed to evaluate all the drugs present in drug bank as potential novel SARS-CoV-2 inhibitors, using computational drug repurposing studies. Docking-based virtual screening and binding energy prediction were performed, followed by Absorption Distribution Metabolism Excretion calculation. Hydroxychloroquine and Nelfinavir have been identified as the best potential inhibitor against the SARS-CoV-2, therefore, they were used as reference compounds in computational DR studies. The docking study revealed 13 best compounds based on their highest binding affinity, binding energy, and dock score concerning the other screened compounds. Out of 13, only 4 compounds were further shortlisted based on their binding energy and best ADME properties. The hierarchical virtual screening yielded the best 04 drugs, DB07042 (compound 2), DB13035 (compound 3), DB13604 (compound 5) and DB08253 (compound 6), with commendable binding energies in kcal/mol, i.e. -65.45, -62.01, -52.09 and -51.70 respectively. Further, Molecular dynamics simulation with 04 best-retrieved hits has confirmed stable trajectories in protein in terms of root mean square deviation and root mean square fluctuation. During 30 ns simulation, the interactions were also found similar to the docking-based studies. However, clinical studies are necessary to investigate their therapeutic use against this outbreak.

9.
Radiol Case Rep ; 16(11): 3244-3249, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1454484

ABSTRACT

Coronavirus disease (COVID-19) disease is a serious pandemic that put the world on an exceptional sanitary alert. It is a multifaceted disease, since it can affect the lung, the cardiovascular system and the central nervous system at the same time. A 66-year-old man, diabetic, hypertensive, admitted to the emergency room for medical management of acute dyspnea, diagnosed with COVID-19 infection. The evolution is marked by respiratory distress as well as new onset atrial fibrillation and a severe ischemic stroke of the brainstem. COVID-19 disease is associated with very serious thromboembolic complications of high incidence, and this is explained by the coagulopathy secondary to the alteration of the microcirculation after the hyper-inflammatory state. Ischemic stroke is one of these complications. The occurrence of new onset atrial fibrillation during COVID-19 infection makes the incidence of ischemic stroke very high and the prognosis more severe. The treatment is mainly based on antithrombotic therapy. Thromboembolic complications remain a real problem to manage in COVID-19 patients given the several mechanisms that promote this situation.

10.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313431

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

11.
J Mol Struct ; 1239: 130488, 2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1198992

ABSTRACT

Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus (SARS CoV-2) has been declared a worldwide pandemic by WHO recently. The complete understanding of the complex genomic structure of SARS CoV-2 has enabled the use of computational tools in search of SARS CoV-2 inhibitors against the multiple proteins responsible for its entry and multiplication in human cells. With this endeavor, 177 natural, anti-viral chemical entities and their derivatives, selected through the critical analysis of the literatures, were studied using pharmacophore screening followed by molecular docking against RNA dependent RNA polymerase and main protease. The identified hits have been subjected to molecular dynamic simulations to study the stability of ligand-protein complexes followed by ADMET analysis and Lipinski filters to confirm their drug likeliness. It has led to an important start point in the drug discovery and development of therapeutic agents against SARS CoV-2.

12.
Sports Med Health Sci ; 2(4): 221-223, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023749

ABSTRACT

Ever since the outbreak of Coronavirus disease 2019 (COVID-19) in late 2019, it has killed millions of people worldwide. Even people not stricken by this disease are not spared from its negative economic, social, and health-related drawbacks. This commentary provides insight into the potential mechanisms involved in the development of depression and emotional negativity escalating during the current pandemic. In particular, preventive measures of COVID-19, such as staying at home, are sedentarism measures that decrease physical activity. Physical inactivity alters gut microbiome structure in a fashion that promotes gut dysbiosis and flaring of systemic inflammation, leading to the buildup of body fat. Obesity, which contributes to a trail of health-depleting disorders, furthers gut microbial disintegration while fat tissue stimulates the release of cytokines, promotes metabolic resistance, and alters signaling involved in the production of antioxidants. As a result, the body gets flooded by toxic molecules such pro-inflammatory mediators, free radicals, and advanced glycation end products. These toxic molecules alter cellular function in all body tissues, including those of the brain. Neuroinflammation is associated with progressive declines in cognitive and motor functions along with dysregulation in emotions. Counteracting the sedentarism enforced by the COVID-19 pandemic through the participation in suitable indoors activities and the intake of healthy food is likely to protect against or revert physiological impairments that may affect people retreating to their homes during the current crisis, eventually restoring physical and mental health.

13.
JACC Basic Transl Sci ; 5(5): 501-517, 2020 May.
Article in English | MEDLINE | ID: covidwho-1023614

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, the authors provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

14.
Front Neurol ; 11: 565665, 2020.
Article in English | MEDLINE | ID: covidwho-1016072

ABSTRACT

Coronaviruses (CoVs) are enveloped RNA viruses and have been shown to cause mild to severe respiratory infections in humans, with some severe cases inducing neurological manifestations. The lethality and Neurological effects of the Severe Acute Respiratory Syndrome (SARS-CoV), Middle-East Respiratory Syndrome (MERS-CoV), and recently the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) have been well documented though currently there is little literature regarding long term effects and the implications for neurorehabilitation. SARS-CoV-2 and MERS-CoV have been linked to the infection associated inflammatory cytokine storms and induced hypercoagulopathic states that affect the entire vascular system including that of the brain. This mini-review provides an overview of the commonalities among studies published on all three types of the coronavirus related to acute ischemic stroke (AIS). The aim was to elucidate the physiological mechanisms underpinning COVID-2 and to reflect the similarities with the chronic inflammation induced symptoms of AIS that are likely to prove a further challenge for neurorehabilitation clinicians post COVID. In terms of increased incidence of COVID and AIS, it is likely that in depth knowledge of increased thrombotic risk in this population will require appropriate anticoagulation treatment, and other therapeutic interventions as well as neurorehabilitation interventions. Lastly the risk of spreading the virus requires further balancing of the provision of neurorehabiliatation services useful to the patient.

15.
World Allergy Organ J ; 14(1): 100498, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-965714

ABSTRACT

COVID-19 is described in a clinical case involving a patient who proposed the hypothesis that Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-interacting nutrients may help to prevent severe COVID-19 symptoms. Capsules of broccoli seeds containing glucoraphanin were being taken before the onset of SARS-CoV-2 infection and were continued daily for over a month after the first COVID-19 symptoms. They were found to reduce many of the symptoms rapidly and for a duration of 6-12 h by repeated dosing. When the patient was stable but still suffering from cough and nasal obstruction when not taking the broccoli capsules, a double-blind induced cough challenge confirmed the speed of onset of the capsules (less than 10 min). A second clinical case with lower broccoli doses carried out during the cytokine storm confirmed the clinical benefits already observed. A third clinical case showed similar effects at the onset of symptoms. In the first clinical trial, we used a dose of under 600 µmol per day of glucoraphanin. However, such a high dose may induce pharmacologic effects that require careful examination before the performance of any study. It is likely that the fast onset of action is mediated through the TRPA1 channel. These experimental clinical cases represent a proof-of-concept confirming the hypothesis that Nrf2-interacting nutrients are effective in COVID-19. However, this cannot be used in practice before the availability of further safety data, and confirmation is necessary through proper trials on efficacy and safety.

17.
Obes Med ; 19: 100283, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-650536

ABSTRACT

INTRODUCTION: Obese patients have an increased risk of COVID-19 critical illness leading to ICU admission or death compared to normal weight individuals. SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) receptor is a critical step mediate virus entry into target cells. Articles have alluded that the level of ACE2 gene expression in adipose tissue is higher than lung tissue, but a PubMed search found no results in articles to demonstrate this. The aim of this study was to investigate ACE2 gene expression in adipose tissue and lung tissue using a public database. MATERIAL AND METHODS: A search of a public gene expression database to investigate ACE2 gene expression in human tissues. RESULTS: ACE2 gene expression was present in both visceral and subcutaneous adipose tissues. The gene expression profile demonstrated that ACE2 gene expression was higher in human visceral and subcutaneous adipose tissues than human lung tissue. CONCLUSION: This study demonstrates that ACE2 gene expression is higher in visceral and subcutaneous adipose tissue than that in lung tissue, a major target tissue affected by SARS-CoV-2 infection. This suggests a mechanism by which excess adiposity may drive greater infection severity in patients with COVID-19.

18.
JACC Basic Transl Sci ; 5(9): 871-883, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-613132

ABSTRACT

Using serial analysis of myocardial gene expression employing endomyocardial biopsy starting material in a dilated cardiomyopathy cohort, we show that mRNA expression of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) cardiac myocyte receptor ACE2 is up-regulated with remodeling and with reverse remodeling down-regulates into the normal range. The proteases responsible for virus-cell membrane fusion were expressed but not regulated with remodeling. In addition, a new candidate for SARS-CoV-2 cell binding and entry was identified, the integrin encoded by ITGA5. Up-regulation in ACE2 in remodeled left ventricles may explain worse outcomes in patients with coronavirus disease 2019 who have underlying myocardial disorders, and counteracting ACE2 up-regulation is a possible therapeutic approach to minimizing cardiac damage.

19.
Cureus ; 12(6): e8411, 2020 Jun 02.
Article in English | MEDLINE | ID: covidwho-600042

ABSTRACT

The novel coronaviruses causing severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) have been shown to utilize angiotensin-converting enzyme 2 (ACE2) as the receptor for entry into the host cells. The involvement of the renin-angiotensin system (RAS) in the evolution and pathogenesis of lung diseases has been implicated in recent years. The two enzymes of RAS, angiotensin-converting enzyme (ACE) and ACE2, serve a contrasting function. ACE helps in the formation of angiotensin II (AGII) from angiotensin I (AGI), and ACE2 cleaves AGI and AGII into AG (1-9) and AG (1-7) respectively. The ACE-induced AGII has vasoconstrictor and pro-inflammatory properties via AT1R, whereas ACE2 has been shown to protect against lung injury. The less spoken about AGII receptor, angiotensin receptor type 2 (AT2R), has anti-inflammatory and anti-fibrotic effects in lung tissue and may be of significance in light of the lung pathology presentation in COVID-19. A review of articles searched in PubMed and peer-reviewed journals of importance was done using search terms "ACE2," "AT2," "SARS," and COVID-19." Lung involvement in both SARS and COVID-19 has been very severe and suggestive of severe inflammatory and immune reactions. Animal studies have shown that ACE2 and AT2 receptors counter the pro-inflammatory and other effects mediated by angiotensin II by their vasodilator, anti-inflammatory, anti-fibrotic, and anti-proliferative effects. They have been shown to protect against and revert acute lung injuries. The instrumental role of recombinant ACE2, AT2 receptor agonists, and AT1 receptor blockers may be helpful in the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL